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Note 

Angular Monte Carlo Integration 
Using Quaternion Parameters: 

A Spherical Reference Potential for Ccl, 

The starting point for any perturbation theoretical treatment of molecular liquids is 
a suitably defined reference or effective potential u&r). Experience has shown that, 
in general, for a given anisotropic model potential u(r, Q,, sl,), the choice 

ueff(r) = -kT In b(r), (14 

with 

will yield the best results. This means that, at least for the thermodynamic properties, 
the perturbative terms remain small, and that the pair correlation function g,,,(r) 
pertaining to u&r) is a good approximation to the centers-pair correlation g::‘(r) of 
the anisotropic particles. (In the linear diatomics case, this latter statement has to be 
modified [ 1, 21, but this is irrelevant to what follows.) 

In the most general case of nonlinear anisotropic molecules, the double angular 
integration in (lb) involves 5 variables. Depending on the symmetry of the model 
molecules, the number of angular variables and the integration regions may be 
reduced, but that is of no advantage if we want to construct a generally applicable 
computer program. Very often, straightforward angular step integration is used to 
evaluate (lb). In this case, the influence of the angular step size must be assessed 
carefully, since the integrand may vary rather sharply with the angle variables. The 
use of a Romberg integration scheme may be of advantage in this respect, but such 
schemes tend to be time-consuming when applied to multidimensional problems. An 
attractive alternative is the simple Monte Carlo integration. For a given pair distance 
r, a sequence of K random orientational configurations (a,, a,) with energies uk 
(k = l,..., K) is sampled. An unbiased estimate bMC of b(r) is then given by 
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The standard error of bMC is 

(BbMC)* = .A [f g, e-2uk’kT - ,,,,,I. (2b) 

When evaluating (2a), it is advantageous to avoid the use of Euler angles, since in 
most machines the computation of trigonometric functions is lengthy. Moreover, the 
potential U(I, a, ,a,) figuring in the integrand is not as a rule given explicitly in terms 
of angles, but rather of site-site distances, as in the case of n-Lennard-Jones-centers 
models which are defined by 

where i and j denumerate the LJ centers in each of the two interacting molecules. The 
introduction of Euler angles is therefore quite unnecessary in the first place. We shall 
use the symmetric quaternion parameters instead [3,4], taking advantage of a 
sampling method due to Marsaglia. It will be shown that whenever orientations have 
to be picked at random, replacement of Euler angles by quaternion parameters will 
save computing time. Details of the method given below may therefore be of 
advantage also in the more general case of of Metropolis-type Monte Carlo 
calculations on systems of structured molecules (see, e.g., [5] and references quoted 
therein). As a rule, however, the subsequent evaluation of N(iV- 1)/2 pair 
interactions is the most time-consuming step in such calculations, so that the 
speeding-up of the orientation sampling is of minor importance there. 

For clarity, the simple case of linear molecules will be considered first. The orien- 
tation of such a particle is defined most simply in terms of the three Cartesian 
components of a unit vector. The presence of one unnecessary parameter [3 instead 
of 2 orientational coordinates) is more than offset by the formal symmetry and the 
absence of trigonometric functions. Randomly oriented unit vectors are most 
efficiently sampled using a technique due to Marsaglia [6]. This procedure consists of 
the following two steps: 

(a) generate pairs of random numbers r,, & independent and uniform on the 
interval (-1, 1) until S = <: + I!$ < 1; 

(b) form the random unit vector 

For nonlinear bodies, the four quaternion parameters serve the same purpose as the 
three Cartesian unit vector components in the linear case. A random orientation may 
now be characterized by a set of parameters A = {A,,u, v,p} which fulfill the sole 
condition A2 +p* + v2 + p2 = 1 (analogous to the condition e: + e: + e: = 1 for a 
random unit vector). But this is a tantamount to saying that we have to pick the 
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vector A at random on the surface of a four-dimensional unit sphere. Again, 
Marsaglia [6] has given a prescription for doing this in a fast and efficient manner: 

(a) generate pairs of random numbers rr, & independent and uniform on 
(-l,l)untilS,=~~+<~<l; 

i(b) _ do the same for pairs &, <., until S, = r: + r: < 1; 
(c) form the random unit 4-vector 

On a CDC 170-720 the average computing tume for the cycle a through c is 
1.36 x 10 -4 sec. The equivalent task of picking a random orientation using Euler 
angles takes 5.51 x lop4 sec. on the average. 

For a given distance r, a large number (2 x lo3 to 1 x 104) of random orientations 
a,, & of the two molecules is sampled in this way. Having picked a particular orien- 
tational pair configuration, we want to calculate the potential energy given by Eq. (3). 
To do this, we need the position vectors c,, in the laboratory frame, of all interaction 
sites in the two molecules. The vectors rL may be calculated from the intramolecular 
position vectors rM by 

r,=i. rM, W 

where the rotation matrix is trivial in the linear case, and in the nonlinear case has 
the form [3] 

i 

L*-p*-v2+p* WP - VP) 2(vk + PPUP) 
X= WP + VP> p*-v*-A* +p* 2@v-Lp) . 

1 
(4b) 

w - PP) 201v + JP) v2-12-2-pz+p2 

It should be noted at this point that it is quite easy to include fractional charges (in 
addition to the LJ interaction sites) in this scheme, thus mimicking the action of 
molecular multipoles. 

Application to Ccl,. In order to give a specific example we have applied the 
method to a tetrahedral 4-W model of Ccl,. The parameters of this model, as used 
by Steinhauser and Neumann (SN) in a molecular dynamics study [7], are 
.q,/k = 12OK, (T,, = 3.4A and l= 1.77A (C-Cl bond length). We have calculated the 
effective potential for this system at ten temperatures between 210 K and 1365 K. By 
comparing the resulting second virial coefficient B,(T) with experimental data [9], we 
conclude that the well depth E,, of the Cl-Cl interaction should be E,, = 210k instead 
of 120k. The effective potential calculated with this improved e0 is depicted in Fig. 1. 
It turns out that the repulsive part of u&r) may be approximated very well by a 
Kihara potential defined as 

UKi&) = 4E [ (=J”- (=)-“I, UW 
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FIG. 1. Reference potential of Ccl, at two temperatures: (-). T= 3 15 K: (- - -). T= 840 K; 
( ), Kihara approximation (Eq. 6) to t+(r) at the lower temperature. 
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FIG. 2. Pair correlation function pertaining to ueff(r) at p = 6.24 . lo- ’ A-’ and T= 300 K. (---), 
g,,(r) from simulation with u,,(r); (- - -), g,,,(r) from simulation with U,o,,(r) instead of z+(r): ( ‘. ), 
g:?(r) from full MD simulation by Steinhauser et al. [7]; (- -), Percus-Yevick pair correlation 
function to ueII(r). 
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TABLE I 
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E* =&/E. Is* = u/u0 d* = d/q, 

a0 5.08250 1.21990 1.27040 
a, -2.14940 0.11068 0.41717 
a2 0.67544 -0.00039 -0.14939 
a3 -0.09928 -0.00292 0.02589 
a4 0.005 5 1 0.00027 0.00164 

Note. Polynomial tit to the Kihara parameters of the reference potential for Ccl, (see Eq. 6). In the 
range 1 < T* < 6.5, the tit is better than 1.5% for E* and < 0.5% for u* and d*. The data to be fitted 
had r.m.s. errors of 0.5% (E*), 0.2% (u*), and 1% (d*). 

where the Kihara parameter u may be extracted from the distance of zero force d 
using 

a=(d-@)/(l-fl). (12b) 

Beyond the potential minimum, the Kihara function deviates from U&T). It is the 
repulsive part, however, which dominates the structure of a model system at liquid 
densities. This is illustrated by Fig. 2, which shows the pair correlation functions 
pertaining to U&T) and Use,, at p = 6.24 x lop3 Ap3 and T= 300 K. The 
functions g,,,(r) and g&r) were computed by short MD runs using U&T) and 
Use,,, respectively. Also shown in Fig. 2 is the centers pair correlation function 
g::‘(r) given by SN, and finally, gpy(r) as predicted by Percus-Yevick theory 
(applied to u,r&)). 

In view of the good agreement between gKih(r) and gerf(r), it seems worthwhile to 
consider the Kihara approximation the the effective potential more closely. In 
particular, the reduced Kihara parameters E * = &/so, u* = u/cro, and d* = d/o0 as 
functions of the reduced temperature T* = kT/so may be represented by least squares 
polynomials in T*. The coefficients of these polynomials are listed in Table I. 
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